Validity of Edgeworth expansions of minimum contrast estimators for Gaussian ARMA processes
نویسندگان
چکیده
منابع مشابه
Edgeworth Expansions for Realized Volatility and Related Estimators
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we compute Edgeworth expansions for such estimators. Unlike the usual expansions, we have found that in order to obtain meaningful terms, one needs to let the size of the noise to go zero asymptotically. The results have application t...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملExponential bounds for minimum contrast estimators
The paper focuses on general properties of parametric minimum contrast estimators. The quality of estimation is measured in terms of the rate function related to the contrast, thus allowing to derive exponential risk bounds invariant with respect to the detailed probabilistic structure of the model. This approach works well for small or moderate samples and covers the case of a misspecified par...
متن کاملExpansions for Gaussian processes and Parseval frames
We derive a precise link between series expansions of Gaussian random vectors in a Banach space and Parseval frames in their reproducing kernel Hilbert space. The results are applied to pathwise continuous Gaussian processes and a new optimal expansion for fractional OrnsteinUhlenbeck processes is derived.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1987
ISSN: 0047-259X
DOI: 10.1016/0047-259x(87)90096-0